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Dimension of discrete fractal spaces 
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Belgium 
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Abstract. A new definition of fractal dimension in the case of discrete metric spaces is 
given. I t  defines the dimension of an  arbitrary unbounded subset X of the v-dimensional 
lattice Z ' .  

1. Introduction 

Recently the physics community working on applications of fractal geometry became 
aware [ 1-31 of slight differences in the definitions of fractal dimension that are being 
used. Apparently, if the fractal objects have sufficient scaling symmetry then it does 
not matter too much how the fractal dimension is calculated. But in many situations 
the scaling symmetry is absent and a careful choice of algorithm should be made. 

In a strict sense any self-similar fractal [4] has perfect scaling properties. This 
means that there exists a transformation of the fractal object which rescales all distances 
by a constant factor A # 1. A broader class of fractals have more complicated scaling 
properties. For example, the similarity transformation may rescale the object with 
different scale factors in different directions of n-dimensional space. It is in the latter 
case that explicit examples are cited in the literature [ 1-31 of fractal dimensions which 
depend on the definition one uses. 

For many fractals the scaling properties emerge only asymptotically, either in the 
microscopic limit (as, e.g., in the HCnon attractor) or  in the limit of large volumes. 
The so-called fractal lattices [5] are an example of the latter case. Sometimes the names 
inner and outer (or local and global) dimension are used to distinguish between fractal 
dimensions calculated in the two asymptotical regimes. The only definitions which 
explicitly give the inner fractal dimension are those of the Hausdorff dimension and 
of capacity. Other definitions implicitly assume full scaling behaviour. In view of the 
difficulties with disagreeing definitions mentioned above it is desirable to formulate 
an  explicit definition for the outer fractal dimension. Such a definition is given here, 
albeit in the restricted context of fractal lattices. 

2. The mass and box-counting definitions 

Consider a subset X of the v-dimensional lattice Z". The obvious way to determine 
its fractal dimension dr  is by the scaling relation 

/ X  n V(1)l- I " !  
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stating that the number of points in the intersection of X with a v-dimensional box 
of side 1 varies as a power of 1. (The word 'box' is used with the meaning of (hyper-)cube; 
instead of cubes one could use spheres by an obvious change of metric.) This is known 
as the 'mass' definition of the fractal dimension [6]. Remark that it is implicitly 
understood that the box is placed in such a way that the intersection with X contains 
a maximal number of points. Indeed, the intersection of an arbitrary box with X is 
empty with probability one (at least if the fractal dimension of the set X is strictly 
less than that of the lattice). 

Alternatively one can use the box-counting algorithm [4, p 1961 which can be 
adapted to fractal lattices as follows. A large box V( I )  is partitioned into small boxes 
K(s)  of side s. One counts the number of these small boxes containing at least one 
point of X .  Let n ( l ,  s )  denote the latter number. Then the formula for the fractal 
dimension df is 

How the limits of large s and I should be taken is not too clear. In practice one makes 
an appropriate choice of the large box V( I )  and looks for a domain of s values where 
the quantity n( l ,  s)  shows scaling behaviour. Because the number of points in the 
boxes v (s )  scales as s d f  the number of squares n ( l ,  s)  varies asymptotically as 

n(/, s ) - / ~ n  v(l)ls-'r. 

Using the latter expression one immediately verifies that the box-counting formula 
agrees with the mass definition if scaling arguments hold. 

3. Definition 

The new definition proposed in the present paper makes use of coverings of a finite 
part X n V( I )  of the set X with sets Ai whose diameter S(A,) is larger than or equal 
to a minimal value s. (The Ai may overlap-a partition is not required.) The covering 
is varied so as to obtain a minimal value for the expression 

The dimension d which appears is a free parameter, not related to the dimension v 
of the host lattice. The obtained minimum is used to construct a function 

The convergence of the limit is discussed in the appendix. 
For small values of the dimension d one always finds md ( X ,  s)  = 0, independent 

of the value of s. In  the limit d + Cc the function md involves the minimal number of 
boxes needed to cover X n V ( I ) .  Hence m,  is the analogue of the capacity. 

The following inequalities can be easily derived. First use one box A, of diameter 
s for each point of the intersection X n V ( l ) .  One obtains 

0 s  m d ( X ,  s)s 1. 
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Let s s s’. Each covering of X n V( I )  with elements of diameter 6 ( A , )  3 s‘ is a covering 
with elements satisfying 6 ( A , )  3 s. There follows 

s s s ’  implies m d ( X ,  s ) ~  ( s ’ / s ) ” i n d ( x ,  SI). (3) 

If m d ( X ,  s )  does not vanish for one value of s, then i t  is strictly positive for all 1’2 s. 
Depending on the value of d two possibilities are left: either md ( X ,  s ) is identically 
zero as a function of s, or  m d ( X ,  s )  is strictly positive for large enough values of s. It 
is also obvious that m,(X,  s )  is an increasing function of d, o r  is at most constant. 

Now the fractal dimension df of the set X is defined as the value of d such that 
the function m d ( X ,  s )  is identically zero for smaller values and is non-zero for larger 
values of d. Remark that the inverse l / m d  ( X ,  s) is the d-dimensional density of points 
in X and is the analogue of the d-dimensional Hausdorff measure. I f  the set X is 
self-similar then the mass definition applies and is expected to agree with the new 
definition. 

4. Examples 

Let us consider three subsets X of the natural numbers, and determine their fractal 
dimension. 

The number of primes smaller than a given integer N varies as N/ln N. Hence 
the set X of all prime numbers has a vanishing density and its fractal dimension does 
not follow in a trivial way. But one verifies immediately that md ( X ,  s )  = 0 for all d < 1, 
and  that m , ( X ,  1) = 1. One concludes that the fractal dimension df of the set of prime 
numbers equals 1. 

Fix a positive integer x 3 2. Let X be the set of all xth powers of the natural numbers 

x = (1, 2‘, 3‘, . . .}. 
A scaling argument immediately tells us that d f =  l / x  (mass definition of the fractal 
dimension). Remark that the box-counting algorithm is not suited for this example. 
For special values of the size s of the boxes (s = ( p +  1)‘ - p ‘ ; - r  1, p = 1 ,2 , .  . ,) the 
number of non-empty boxes can be calculated analytically. It nowhere shows a 
power-law behaviour of the desired type. The new definition immediately gives df 2 l/x. 
The argument to show equality is somewhat longer. Consider an  interval A, covering 
the points p‘:  . . . ( p + s)“. It has length 6 (  A , )  = ( p + s)‘ - p‘ ;  + 1 and  covers s + 1 points. 
One checks that 6 ( A , ) l  ‘ 2 s S  1. Hence the contribution of any term 6 ( A , )  in the 
definition of m d ( X ,  s )  with d = l/.u is always larger than the number of points it covers. 
One concludes that m , ,  y(X, s )  a 1. Hence d f s  l / x  follows. 

Consider the following discrete analogue of the asymmetric Cantor set [ 7 ] .  Sets 
C,, are constructed in an  iterative way. Start with CO= (0) and C, = (0, l} and construct 
C2 by taking the union of C, and CO,  the latter shifted by two units: 

c2= c, U{C,+2} = { O ,  1,2}. 

In  the same way the set C,, is constructed by taking the union of Cn-, and C n - ? ,  the 
latter shifted in such a way that the largest element of C ,  equals 2”-’.  The union of 
all sets C,, is the fractal object C,  = {0, 1, 2, 3 ,4 ,6 ,  7 ,  8, 12, 13, 14, 15, 16, 24,. . .}. It 
has many properties in common with the asymmetric Cantor set of [ 7 ] .  In  particular 
the fractal dimension df according to the mass definition can be calculated and equals 
I n g / l n 2  where g is the golden ratio. It is the same as the Hausdorff dimension of 
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bl 
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the asymmetric Cantor set. (One immediately checks that the number of points in the 
set C,, equals the Fibonacci number F,+i which asymptotically increases as g”.) One 
verifies that md(  C,, s )  = for all d > d, and m d (  C,, s )  = 0 for all d < d r .  Hence 
the new definition and the mass definition coincide in this case. 

0 0 0  
0 0 0  

0 0  
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++++++ +ttt+t+++t++++++ 

0 0 0 0 0 0 0 0 0 0  

5. Numerical determination 

bl 

,Eb 

0 

As a test of the practical usefulness of the function md ( X ,  s )  a numerical determination 
of the dimension of the previous example C ,  has been carried through. The 
approximant C,, was used. It contains 144 integers, the last of which is 512. The 
quantity 

1 
s d m d ( s ) = - m i n x  c ? ( A , ) ~  

ICiOI I 

was evaluated ( { A , } ,  is a covering of C,, with 6 ( A , )  3 s). See figure 1. Each curve in 
the figure takes about 1 min of computing time on a VAX 8200 computer. One observes 
that at d = 0.694 - d ,  the function m d ( s )  shows scaling behaviour in the range s = 1-512. 
At larger values of d (d = 0.7 and larger) there is a systematic deviation of scaling 
with exponent d. In this way a numerical determination of d ,  with an  accuracy of 
about 1% is achieved. At smaller values of d, d < d , ,  one finds also that the function 
m d ( s )  scales as s - ~ .  This is an artefact due to the finite size of the sample. The 
coefficient in front of the power law tends to zero as the size of the sample is increased. 
(Indeed, md (s) has to be zero for the infinite sample as long as d < d, holds.) 

It would be interesting to apply the present definition to situations where one 
expects the different definitions to give different values for the fractal dimension. 
However, the minimisation which occurs in the definition of md (s)  poses numerical 
problems for two- and higher-dimensional host lattices. A first attempt to apply the 
definition on subsets of Z‘ is found in [8]. 

x x x x x x x x x x x x x x x x x x x x x x x x x x x x  

........................... 
I I I I 

1 o o o o o o  
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6. Scaling 

The determination of the dimension of fractal lattices can be simplified by the expected 
scaling behaviour of the function m , ) ( X ,  s )  for d values in the vicinity of, but slightly 
larger than d r .  Let us introduce the following function 

(4) 

( In  numerical work one does not take the limit of large s, but for values of d close to 
d, the scaling behaviour of m,](X,  s )  allows the determination of D ( d )  as a slope in 
a log-log plot.) 

One can show that the inequality D ( d )  s d holds, and that the function D ( d )  is 
decreasing or  constant (see the appendix). Hence the typical situation is that of figure 
2. If one assumes that m,(X,  s )  scales as S - ~ ,  for d + d, then the inequality D ( d )  s d 
becomes an  equality in the limit d = d f .  

D ( d )  = -lim sup In m,, (X ,  s ) / l n  s d > d, .  
5 - A- 

d ,  d 

Figure 2. Expected behaviour of the function Did 1 as a function of d > d, .  
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Appendix 

Consider a finite subset A of Z' and introduce the notation 

where the minimum is taken over all coverings {A,},  of X n A with sets A, of diameter 
equal to or  larger than s. The quantity m $  satisfies the following subadditivity property: 
let A = A ' u  A", then one has 
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Indeed, if { A : } ,  and {AY}, are coverings of X n A’ and X n A” respectively, then the 
union { A , } ,  of both families is a covering of X n A. Hence there follows 

From the arbitrariness of the coverings { A : } ,  and {AY}, ,  relation (A2) now follows. 
The subadditivity can be used to prove the convergence of the limit in the definition 

(2)  of the function m , ( X ,  s ) .  Let m d ( l ,  s )  denote the supremum of m $ ( s )  over all 
boxes A = V (  I )  of diameter 1. Any large box A with diameter I’ much larger than I 
can be approximately divided into boxes A, of diameter 1. Now it follows from 
subadditivity that m$( s)  s m,/ ( I ,  s) .  The arbitrary choice of the box A implies that 
md ( 1 ’ ,  s )  s md ( I ,  s ) .  The limit of a non-increasing sequence of non-negative numbers 
is always convergent. The expression 

m d ( X , s ) = l i m  m d ( l , s )  
I- x 

can now be considered as the definition of how the limit in expression ( 2 )  should be 
taken. 

Finally let us show that D( d ) < d. Assume that s’ < s and that md ( X ,  s’) # 0.  From 
inequality ( 3 )  it follows that 

In m , ( S , s ‘ ) ~ d ( i n s - I n s ’ ) + l n  m d ( X , s ) .  

The expression can be written as 

- d ) .  
- In m,,(X, s )  - d ~ i n s ’ ( -  In m d ( X ,  s‘) 

In s In s In s’ 

In the limit s -$ zc the R H S  of the expression tends to zero. One obtains 

D ( d )  = -lim sup  I n m d ( X , s ) s d ,  
s - x  In s 
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